Используя метод оптимизации переменных допусков, значение COP коэффициента производительности холодильной системы принимается в качестве целевой функции, а основные структурные параметры испарителя, конденсатора, капилляра и объема заполнения хладагента принимаются в качестве переменных оптимизации. Расчет оптимального соответствия выполняется для нескольких основных компонентов системы кондиционирования воздуха, что позволяет значительно улучшить коэффициент энергоэффективности и достичь цели энергосбережения.
1. В последние годы, хотя понимание основных явлений в холодильном оборудовании было относительно ясным, нынешние производители кондиционеров в основном применяют традиционный метод проектирования по аналогии, подчеркивая соответствие условиям оборудования предприятия и опыту проектирования, чтобы достичь определенной степени соответствия системы.
Целью данной статьи является оптимизация подбора холодильной системы с раздельным настенным кондиционером. Принимая значение COP холодильной системы в качестве целевой функции и принимая основные структурные параметры испарителя, конденсатора, капилляра и заправки хладагента в качестве переменных оптимизации, выполняется расчет оптимального соответствия нескольких основных компонентов системы кондиционирования воздуха. Результаты расчетов показывают, что значение COP после оптимизации на 8,07% выше исходного значения, холодопроизводительность увеличивается на 3,77%, а энергопотребление снижается на 3,79%. Цель энергосбережения достигнута.
2. Моделирование рабочего процесса холодильной системы.
Целью моделирования рабочего процесса холодной системы является реализация наилучшего соответствия системы и автоматизации управления рабочим процессом, поэтому имитационная модель должна быть точной и надежной. Как правило, метод сосредоточенных параметров устойчивого состояния является грубым и не может использоваться для понимания характеристик каждой части системы. В данной работе используется стационарный метод распределенных параметров.
2.1 Моделирование испарителя и конденсатора
Поток хладагента в испарителе и конденсаторе является насыщенным, перегретым, насыщенным и переохлажденным соответственно. Обычно при расчете теплоотдачи двух испарителей для каждого состояния в целом принимают формулу средней теплоотдачи. Хотя учитывается разница в теплопередаче между однофазными и двухфазными жидкостями, коэффициент теплопередачи и температура хладагента фактически различны в каждой разделенной области. В данной работе принят пошаговый метод расчета. В предположении о выходных параметрах уравнения сохранения массы, сохранения импульса и сохранения энергии используются для итеративных расчетов и получаются изменения температуры, давления и сухости хладагента.
2.2 Капиллярное моделирование
Хотя структура капиллярной трубки проста, течение хладагента в трубке относительно сложное, что представляет собой процесс «мгновенного испарения» из однофазного потока жидкости, и существует нетермодинамическое равновесное явление задержки испарения, которое оказывает большое влияние на поток хладагента в капиллярной трубке и параметры выхода. В данной работе на основе экспериментальных данных R22 из многих литературных источников модифицирована модель Веннана, которая удовлетворительно отражает связь между задержкой температуры вспышки R22 и диаметром капилляра, переохлаждением на входе и т. д. Параметры входа и выхода капилляра по-прежнему решаются методом параметра шага с помощью одновременной итерации трех уравнений сохранения.
2.3 Моделирование компрессора
В данной статье в холодильной системе кондиционера используется компрессор с вращающимся ротором. Переходное моделирование его рабочего процесса по-прежнему основано на трех уравнениях сохранения, которые всесторонне учитывают эффекты теплообмена между цилиндром и внешним миром, утечку газа, закон движения газового клапана, трение движущихся частей и другие факторы. на рабочие характеристики компрессора, приближая их к реальному рабочему процессу компрессора. В литературе [2] дано подробное описание.
2.4 Моделирование холодильной системы
Блок-схема расчета моделирования холодильной системы принимает массовый расход и объем заполнения системы в качестве критерия сходимости расчета. По сравнению со ссылкой [3] он имеет то преимущество, что выбранное начальное значение оказывает меньшее влияние на скорость сходимости и точность расчета, а также учитывается влияние объема заполнения.
3. Лучшее сочетание холодильной системы.
На основе экспериментальной проверки того, что результаты моделирования холодильной системы хорошо согласуются с экспериментальными результатами, автор установил оптимальную модель оптимизации соответствия между несколькими основными компонентами холодильной системы, и оптимизированная холодильная система достигла цель энергосбережения.
3.1 Параметры оптимизации
(1) Целевая функция и расчетная переменная
Целевая функция в этой статье:
Фх=1/КОП
Значение COP – это коэффициент энергоэффективности.
Расчетные переменные следующие: заправка хладагента M
Ec между ребрами конденсатора; Внешний диаметр трубы док; Длина одной трубки lc; Скорость встречного ветра uc;
Расстояние между ребрами испарителя ee; Внешний диаметр трубки, лань; Длина одной трубки le; Скорость встречного ветра ue;
Длина капилляра L колпачок.
Оптимизация компрессора здесь временно не рассматривается, а внутренний диаметр капиллярной трубки принимается за фиксированное значение.
(2) Ограничения
Явные ограничения заключаются в следующем:
1,5 мм 6,0 мм<доу<12,0 мм, 6,0 мм<доу<12,0 мм, 0,5м 1,0 м/с≤uc≤3,0 м/с, 0,5/с≤ue≤3,0 м/с, 0,6 м≤L колпачок≤1,8 м, 500 г Для удобства расчета указанные ограничения безразмерны. Кроме того, ограничьте расход материала и показатели шума. Вес конденсатора и испарителя после оптимизации не должен превышать вес прототипа. Контроль шума достигается за счет ограничения гидравлического сопротивления воздуха, проходящего через испаритель. 3.2 Метод оптимизации Из-за большого количества имитационных расчетов рабочего процесса холодильной системы кондиционирования воздуха, а также сложной линейной, нелинейной или нелинейной связи между целевой функцией, ограничениями и расчетными переменными, в этой статье используется метод оптимизации допусков переменных. Особенность этого метода в том, что вершина исходного многогранника не обязательно должна быть допустимой точкой и градиент не нужно вычислять, поэтому операция проста. По сравнению с теми методами оптимизации, которые требуют строгой технико-экономического обоснования, время расчета существенно экономится. Кроме того, количество критериев допуска также может быть использовано в качестве критерия окончания поиска. Следует отметить, что при расчете оптимизации холодильной системы комнатного кондиционера, поскольку целевая функция, условия ограничений и переменные расчета представляют собой сложные неявные нелинейные отношения, результаты оптимизации представляют собой локальные оптимальные решения, которые связаны с положением начальной точки. . Кроме того, оптимальное значение проектной переменной соответствует ряду стандартных значений, установленных государством, и оптимальное значение необходимо округлять или стандартизировать. Поэтому необходимо использовать метод «оптимизации подпространства» для округления или стандартизации некоторых проектных параметров. Затем окончательный оптимальный проект получается путем сравнения нескольких локальных оптимальных решений.